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Summary

One of the major challenges facing genome-scan studies
to discover disease genes is the assessment of the ge-
nomewide significance. The assessment becomes partic-
ularly challenging if the scan involves a large number of
markers collected from a relatively small number of mei-
oses. Typically, this assessment has two objectives: to
assess genomewide significance under the null hypothesis
of no linkage and to evaluate true–positive and
false–positive prediction error rates under alternative hy-
potheses. The distinction between these goals allows one
to formulate the problem in the well-established para-
digm of statistical hypothesis testing. Within this para-
digm, we evaluate the traditional criterion of LOD score
3.0 and a recent suggestion of LOD score 3.6, using the
Monte Carlo simulation method. The Monte Carlo ex-
periments show that the type I error varies with the
chromosome length, with the number of markers, and
also with sample sizes. For a typical setup with 50 in-
formative meioses on 50 markers uniformly distributed
on a chromosome of average length (i.e., 150 cM), the
use of LOD score 3.0 entails an estimated chromo-
somewide type I error rate of .00574, leading to a ge-
nomewide significance level 1.05. In contrast, the cor-
responding type I error for LOD score 3.6 is .00191,
giving a genomewide significance level of slightly !.05.
However, with a larger sample size and a shorter chro-
mosome, a LOD score between 3.0 and 3.6 may be
preferred, on the basis of proximity to the targeted type
I error. In terms of reliability, these two LOD-score cri-
teria appear not to have appreciable differences. These
simulation experiments also identified factors that influ-
ence power and reliability, shedding light on the design
of genome-scan studies.
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Introduction

Advances in the development of high-throughput tech-
nologies, including chip technologies (Chee et al. 1996;
Wang et al. 1998), promise that the scanning of human
genomes in the study of complex disease traits will be
routine in the future. A typical genome-scan study may
involve 300–3,000 marker loci that cover the entire hu-
man genome, generating a large amount of marker data.
Although a high marker density throughout the genome
is expected to improve the power to discover disease
genes, having a large number of markers on a small
number of informative meioses also presents statistical
challenges. One of them is the assessment of the ge-
nomewide significance level, an old problem in these
modern times. On the basis of the theoretical consid-
eration for sequential testing, Morton (1955) showed
that LOD score 3.0 may be used as a cutoff for decla-
ration of linkage in the mapping genetic traits by means
of relatively few markers. Nowadays, however, with the
use of densely distributed markers in the mapping of
complex traits, the use of LOD score 3.0 may yield an
excessive number of false-positive errors.

Recognizing this problem, Lander and Kruglyak
(1995) proposed raising the cutoff from LOD score 3.0
to LOD score 3.6, leading to an ongoing debate. Witte
et al. (1996) pointed out that LOD score 3.6 is arbitrary
and that such a general guideline with a simple criterion
may not serve the intended purpose. Curtis (1996), on
the other hand, argued that this guideline is not useful,
since it does not account for multiple models and mul-
tiple phenotypes tried in the analysis. Rao (1998) and
Morton (1998) have been concerned that the proposed
LOD-score-3.6 criterion would increase the chance that
important linkage signals would be missed. Further-
more, via a whole-genome simulation study, Sawcer et
al. (1997) show that the use of LOD score 3.2 ensures
a genomewide significance level of 5%, leading them to
argue in support of the LOD-score-3.0 criterion.

It appears that both the type I error and false-positive
prediction error (FPP), which are related yet different
indices, have been used in this debate. As a matter of
definition, the type I error is the error of rejecting the
null hypothesis, on the basis of a specific test statistic,
under the null hypothesis. FPP, on the other hand, is the
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Table 1

Definition of Types I and II Errors

ERROR UNDER

H0 H1

H0 not rejected 1 � a b (type II error)
H0 rejected a (type I error) (power)1 � b

Total 1 1

error of incorrectly predicting the genomic regions that
include a disease gene locus, after the null hypothesis
has been rejected. For example, Sawcer et al. (1997)
evaluated the type I error on the basis of the maximum
LOD score, at the chromosome level, under the null
hypothesis that the chromosome does not contain any
disease genes. They then combined all chromosomewide
significance levels to compute the genomewide signifi-
cance, under the null hypothesis that the genome does
not contain any disease gene. On the other hand, Morton
(1998) emphasized the importance of computing FPP,
along with the true-positive prediction rate (TPP), and
also suggested that the TPP/FPP ratio, the basis for cal-
culation of the reliability index, is essential for choosing
the criterion. Furthermore, Lander and Kruglyak (1995)
computed the expected number of false-positive errors
under the null hypothesis and used it as a measure of
FPP under alternative hypotheses.

Separate consideration of type I error versus FPP may
be a step in the right direction toward resolution of the
debate about the desirable LOD-score value. In the re-
mainder of this report, we elaborate on definitions of
the type I error, FPP, and expected number of false-pos-
itive signals, in addition to several other indices, and
discuss their relationship in the assessment of genome-
wide significance. Following those definitions, we de-
scribe the genomewide, chromosomewide, and point-
wise significance levels and discuss their relationships.
Recognizing the small sample sizes used in typical ge-
nome-scan studies, we choose the Monte Carlo simu-
lation method to evaluate relevant statistics. Via these
Monte Carlo experiments, we evaluate LOD scores 3.0
and 3.6 in terms of the type I error, power, reliability,
TPP, and FPP. Some discussion and conclusions follow.

Type I Error, Expected Number of False-Positive
Errors, FPP, and Related Indices

Three commonly used indices for the assessment of
genomewide significance are type I error, expected num-
ber of false-positive linkage signals, and FPP. For clarity,
we will define these three indices here. The genomewide
type I error is defined as the probability of falsely re-
jecting the null hypothesis that the genome does not
include any disease gene, when this null hypothesis is
actually true. Specifically, consider a null hypothesis (H0)
that the genome does not include any disease gene, as
presented in the second column of table 1. When the
test statistic for measurement of the genomewide sig-
nificance level exceeds a threshold value, the statistical
decision is to reject the null hypothesis. This rejection
is, of course, an error, which could mislead investigators
to search for nonexistent disease genes. Formally, the
LOD-score type I error may be written as

Pr [ max (LOD scores) 1 T FH ] � a ,a o
genomewide

where the maximization is over all markers genomewide,
a is the designated type I error rate (e.g., ), anda � .05
Ta is the corresponding cutoff value for the maximum
LOD scores (e.g., ).T � 3.6.05

Besides deciding whether to reject the null hypothesis,
one can also count how many times linkage-test statistics
exceed the designated threshold (e.g., LOD score 3.6).
The expectation of this count is defined as the expected
number of false-positive linkage signals. It has been
shown that such a count, provided that there are a small
expected number of occurrences, approximately follows
a Poisson process (Feingold et al. 1993). The derivation
of this approximation requires several assumptions. One
key assumption concerns dependencies among recom-
bination indicators, which are influenced both by phys-
ical distances between markers and by interference be-
tween genomic regions. Owing to the complexity of the
human genome, modeling this dependence is difficult,
and yet this dependence determines how often linkage-
test statistics in adjacent marker loci simultaneously ex-
ceed the threshold value. Furthermore, an increase in the
number of markers, increases dependencies of recom-
bination events in adjacent marker intervals, hence lead-
ing to an increased number of false-positive linkage sig-
nals, as will be illustrated in our simulation study. In
light of both concerns, one may prefer the type I error
to the expected number of false-positive errors, as a mea-
sure of genomewide significance.

The key objective of the genome-scan study is not only
to test the null hypothesis but also to predict which
genomic regions include disease genes, after the null hy-
pothesis is rejected. For example, after rejecting the null
hypothesis, one finds that the test statistic, at the kth
locus, exceeds the threshold value (e.g., LOD score 3.6)
and thus predicts that the genomic interval, (d �k

, includes a disease gene, where dk denotes the�,d � �)k

map distance of the kth marker on the human genome
map and a constant � is used to define the targeted ge-
nomic region (e.g., 10 cM). It is important to realize that
the choice of this constant � is for the convenience of
this simulation study and is somewhat arbitrary, since
additional information may be used in practical genome-
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Table 2

Definition of TPP and FPP, with True-Negative
Prediction Rate and False-Negative Prediction Rate

False
Prediction

True
Prediction Total

Negative prediction fn tn f � tn n

Positive prediction fp (FPP) tp (TPP) f � tp p

Total f � fn p t � tn p 1

scan studies (see the Discussion section). Of course, such
a prediction could prove to be either true or false, as
illustrated in table 2, in which f and t are used to denote
the false and true prediction rates, respectively, and the
subscripts p and n denote positive prediction and neg-
ative prediction, respectively. Note that tp is TPP and
that fp is FPP. Formally, FPP may be expressed as

FPP � Pr[no gene in (d � �,d � �)k k

at every locus having T 1 T d H ] ,k a 1

where Tk is the LOD score at the kth locus and H1 is a
specific alternative hypothesis (e.g., existence of one or
more disease genes on the same chromosome). A similar
definition may be given to TPP. Although conceptually
different, type I error and FPP are intrinsically con-
nected. Specifically, when a specific alternative hypoth-
esis is close to the null hypothesis, the summation of
TPP and FPP is approximately equal to the type I error.
Otherwise, they measure different aspects; one measures
errors in testing, and the other measures errors in
prediction.

An alternative to the use of FPP is to measure the
probability of making wrong predictions only among
those predictions. Formally, this alternative measure may
be defined via a conditional probability; that is,

Pr[no gene in (d � �,d � �) at everyk k

locus having T 1 T d max(T ) 1 T ,H ] .k a k a 1

This measurement is obtainable as the ratio of FPP ver-
sus the power of rejecting the null hypothesis, to be
defined in the following discussion.

Closely related to measurements of significance level
are those for power in the testing of the hypothesis and
for TPP in the prediction of candidate genomic regions.
With regard to hypothesis testing, the power is used to
measure the probability of rejecting the null hypothesis
under a specified alternative hypothesis, presented in the
third column of table 1. Formally, the power may be
expressed as

Power � Pr [ max (LOD scores) 1 T FH ] ;a 1
genomewide

that is, the probability that the maximum LOD score
exceeds the cutoff value under the alternative hypothesis.
The power is generally expressed as , where b is1 � b

used to denote the type II error of not rejecting the null
hypothesis under the alternative hypothesis. By defini-
tion, the power is dependent on the alternative
hypothesis.

With regard to prediction, an important measurement

is TPP, tp, as described above. Morton (1998) suggests
that the ratio or , as a reliability measure,t /(t � f ) t /fp p p p p

is a more important index than either tp or fp alone, in
the evaluation of a procedure for discovery of genes. In
the remainder of this report, we will use as at /(t � f )p p p

reliability measure. Interestingly, both ratios, f /(t �p p

and , have been used as measures of pre-f ) f /(t � f )p n n n

diction errors in the screening literature (e.g., Rothman
and Greenland 1998).

Genomewide, Pointwise, and Chromosomewide
Significance

Genomewide versus Pointwise Significance

Pointwise significance is defined as the probability
that, just by chance, one would encounter a test statistic
as large as or larger than that observed at a specific locus,
under the null hypothesis of no linkage at that locus,
whereas genomewide significance is defined as the prob-
ability that one would encounter such an extreme test
statistic somewhere in a whole-genome scan, under the
null hypothesis of no disease gene genomewide (Lander
and Kruglyak 1995). Under the null hypothesis, the ge-
nomewide significance level could be assessed on the
basis of the pointwise significance levels and the Bon-
ferroni correction. However, markers on the same chro-
mosome are highly correlated, given the chromosomal
architecture, so that the Bonferroni procedure may be
unacceptably conservative. Furthermore, the correlation
of recombination events between markers is influenced
by many factors, including hot spots and interference.
The complexity of the correlation structure generally
makes it difficult to accurately derive a joint distribution
of all pointwise test statistics from the same chromo-
some. Without a joint distribution, it is not possible to
analytically determine chromosomewide significance on
the basis of pointwise significance.

Genomewide versus Chromosomewide Significance

Cytogenetically, a human genome consists of 22 pairs
of autosomes and a pair of sex chromosomes. In meiosis,
all these chromosomes are separately transmitted from
parents to their children. Statistically, such a biological
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fact implies that events on distinct chromosomes are in-
dependent from each other; hence, the genomewide sig-
nificance level is determined by chromosomewide sig-
nificance level. Specifically, genomewide significance is
the probability that one will observe a test statistic more
extreme than that observed under the null hypothesis
that the genome does not contain any disease-gene loci;
chromosomewide significance is the counterpart at the
level of each chromosome. Let Pchromosome i denote signif-
icance at the ith chromosome, one of 24 distinct chro-
mosomes (i.e., 22 autosomes, 1 X chromosome, and 1
Y chromosome). A simple probability argument shows
that the genomewide significance, Pgenomewide, may be ob-
tained as follows (Sawcer et al. 1997):

P � 1 �� (1 � P ) . (1)genomewide chromosome i
i

Given the significance level on each chromosome, equa-
tion (1) allows one to compute the genomewide signif-
icance level. Conversely, given the critical value for the
genomewide significance level, one can compute the crit-
ical value for chromosomewide significance level, pro-
vided that a common error rate is specified for each
chromosome; for example, suppose that the genomewide
type I error rate is considered to be .05 and that a com-
mon type I error rate is chosen for each chromosome.
Equation (1) then simplifies to 241 � (1 � P ) �chromosome

, and solving this equation leads to a chromosome-.05
wide significance of ∼.0021, which is comparable to the
Bonferroni correction ( .05/24). Alternatively, one may�
allow the type I error rate on each chromosome to be
proportional either to its length or to the density of
markers covering individual chromosomes. Under such
scenarios, one may use variable type I error rates de-
pending on the chromosome of interest, while retaining
a specific genomewide type I error rate.

Also because of the independence between chromo-
somes, it suffices to consider the genomewide signifi-
cance level via consideration of the chromosomewide
significance level. Hence, in the remaining discussion,
we will focus on only the chromosomewide significance,
with attention to the variation in chromosome length.
For simplicity, we choose to assign the type I error rate
of .0021 to each chromosome.

The Simulation Setup for Monte Carlo Experiments

The essence of discovering disease genes via linkage
analysis is to estimate recombination fractions, which
measure distances between a disease-gene locus and lin-
early ordered multiple genetic markers whose relative
locations are known. In human studies, the estimation
procedure is complicated, and related computations are
extensive, because meiotic events are not directly ob-
servable. To circumvent this computational challenge,

we consider the situation in which all meioses are fully
informative. For each informative meiosis with K mark-
ers, with or without one or more disease-gene loci, one
can simulate recombination events between adjacent
marker loci, according to a Bernoulli process having a
mean that is equal to the recombination fraction. These
recombination events are generally assumed to be in-
dependent, corresponding to the absence of interference.
To generate a recombination-indicator variable between
a disease locus and every marker, one thus counts how
many recombination events occur between them; an odd
number of recombination events indicates the presence
of a recombination event, and an even number indicates
its absence. To allow for unlinked disease loci due to
genetic heterogeneity or epistatic interactions, we place
a disease locus on the far left or far right and simulate
a recombination event with the adjacent marker locus,
using recombination fraction .50. Hence, such a disease
locus is not linked with any of the marker loci under
consideration. The actual available data from the sim-
ulation experiment are the mixture of these different
types of recombinant data, with the mixture proportion
being l. The proportion l has a value of 0–1, with 0
representing the situation corresponding to the null hy-
pothesis and with 1 representing the situation in which
a disease-related gene that is pertinent to the entire study
population. With essentially the same setup, the simu-
lation experiment was also extended to include a second
disease gene, with an additional l value.

The presence of interference implies that recombina-
tion events across the genome may no longer be inde-
pendent and that the dependence structure could be
rather complicated. To study the influence that interfer-
ence has on the cutoff, we consider a simplistic inter-
ference model. First, independent recombination events
are simulated on the genome, as has been described
above. Then simulated recombination events are mod-
ified to yield the final realization of the recombination
events: if, initially, there is no recombination event in a
particular interval, the final realization for the interval
has a probability of being a recombinant, provided that
an adjacent interval has a recombination event. Now the
probability is treated as a dependence parameter, with
0 representing the absence of interference and with val-
ues of 10 for representing the presence of interference.

Besides the dependence parameter and the mixing pro-
portion, there are several other key parameters. Since
the experiment simulates markers from a single chro-
mosome, it is natural for us to consider a chromosome
of average length, , whereas the length of ai � 150 cM
specific chromosome may be 60–300 cM. Another pa-
rameter is the number of markers (h) used in the genome
scan, a value that, in most simulations, we chose to be

markers/chromosome, with a range ofh � 50 h � 20–
/chromosome and with a range of 7.5–1.5 cM rep-100
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Figure 1 Typical pattern of estimated recombination fractions
from simulated genome scan with the mixing proportions , .25,l � 0
.50 .75, and 1.00 (other examples may be simulated online at the Fred
Hutchinson Cancer Research Center QGE Website).

resenting the corresponding average distance between
markers on a 150-cM chromosome. Such densities imply
that 480–2,400 markers are used in the genome-scan
study. Furthermore, the number of informative meioses,
n, reflects the sample size of the study and typically is
considered to be , with a range of .n � 50 h � 30–150
Finally, in predicting the candidate genomic region, one
needs to assign a neighborhood around the kth linked
marker locus at the position, dk; that is, the candidate
genomic region is predicted as being . Ob-(d � �,d � �)k k

viously, the narrower the region, the more precise the
prediction, at the expense of additional false–positive
errors. In a typical simulation, , with a range� � 10 cM
of 2–20 cM.

Consider a genome-scan study with K marker loci on
n informative meioses, in which the ith vector of sim-
ulated recombination events may be denoted as follows:

. Averaging these n vectors results in ay � (y ,y ,...,y )i i1 i2 iK

point estimate of recombination fractions of a putative
disease gene with all K marker loci. The pattern of these
estimated recombination fractions offers a clue to the
position of putative disease genes. Figure 1 shows ex-
amples of patterns of estimated recombination fractions
and LOD scores resulting, in one case, from the presence
of one major gene located at ∼40 cM (fig. 1, left-side
panels) and, in another case, from the presence of two
major genes, one at ∼40 cM and the other at ∼120 cM
(fig. 1, right-side panels). Clearly, under the alternative
with either one major gene or two major genes, recom-
bination fractions in the neighborhood of major genes
are !.50, as expected. Interestingly, it appears that
marker loci, in the same region as but distant from those
major genes, often have recombination fractions that are
!.50. This phenomenon is referred to as a “region ef-
fect.” Furthermore, in the case of two major genes, the
patterns both of recombination fractions and of LOD
scores appear to suggest that there is one disease gene
and that it is located at 50–100 cM—which is, of course,
incorrect. Visual examination of genome-scan data can
help one to identify certain problems and issues in the
interpretation of genome-scan studies. As a service to
interested investigators, we have set up a program at the
Fred Hutchinson Cancer Research Center QGE Web-
site), with which readers may simulate genome-scan data
and gain further experience with potential patterns of
recombination fractions and LOD scores. Besides having
interesting patterns, recombination events among adja-
cent marker loci are highly correlated, because of the
genomic structure underlying the K recombination
events. Correlation between markers decays as distances
between them increase, and the pattern with one major
gene is shown in figure 2, in which the average density
among 50 markers is 3 cM and in which the color in-
tensity corresponds to the magnitude of correlation. Al-
though the Markovian correlation model may be used

to approximate such a correlation structure (e.g., see
Feingold et al. 1993), this approximation is appropriate
only if the number of informative meioses is large and
only if there is no interference throughout the genome.
Similarly, the same conditions are required for approx-
imation, by Brownian motion, of the random process of
yi.

Because of the small sample sizes and the complex
structure of the recombination process, it appears that
the only available option in the study of the statistical-
significance issue is the Monte Carlo simulation method.
The Monte Carlo experiment used here involves
100,000 replicates, so that the estimation ofa � .0021
the type I error is based on 210 (i.e., 100,000 #

) expected events, whereas the estimated standard.0021
error of the type I error rate ( i.e.,�41.45 # 10 ≈

).�.0021 # (1 � .0021)/100,000

Evaluation of LOD Scores 3.0 and 3.6

Using the simulation setup described above, we eval-
uate two proposed criteria—namely, LOD 3.0 and
3.6—for both testing the hypothesis and predicting the
location of disease genes. The evaluation includes com-
parisons of type I errors, powers, reliabilities, TPP, and
FPP.

The Testing-and-Prediction Procedure

For the purpose of testing the null hypothesis, we com-
pute LOD scores at all marker loci, which is equivalent
to a two-point linkage analysis for scanning the genome.
When the maximum LOD scores exceed a threshold
(e.g., 3.0 or 3.6, which are used in the present study),
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Table 3

Estimated Type I Errors under a Typical Simulation Setup and
Its Variations, with Number of Informative Meioses, Length
of Chromosome, and Number of Markers

ESTIMATED TYPE I ERROR, FOR

Lod Score 3.6 Lod Score 3.0

Typical setupa .00191 .00574
No. of informative meioses:

30 .00117 .00566
50 .00191 .00574
60 .00066 .00247
100 .00081 .00369

Chromosome length:
60 cM .00098 .00292
150 cM .00191 .00574
200 cM .00200 .00680
300 cM .00263 .00856

No. of markers:
20 .00132 .00422
40 .00190 .00597
50 .00191 .00574
100 .00224 .00706

a 50 meioses, 50 markers, 150-cM chromosome.

Figure 2 Typical pattern of estimated correlation coefficients from a simulated genome scan with mixing proportion l � .75

the null hypothesis is rejected—that is, there seems to
be one or more disease-related genes on the chromo-
some. Proceeding to the prediction stage, one could look
for marker loci that have LOD scores exceeding the same
threshold value. As expected, multiple marker loci may
be candidates, either (a) because they are closely linked
with the underlying disease gene and because recombi-
nation events among markers within a neighborhood are
correlated, thereby inducing a “regional effect,” or (b)
because they occur purely by chance. To balance be-
tween specificity and FPP while avoiding the influence
of local correlation, we adopt an iterative procedure: (1)
we identify the genomic region around the marker locus
with the maximum LOD score—that is, ;(d � �,d � �)k k

then (2), after excluding the identified region, we search
for the maximum of LOD scores on remaining markers,
and, if the maximum LOD score exceeds the threshold
value, consider the corresponding marker locus and its
neighborhood region; and (3) we continue this process
until no LOD score exceeds the threshold value.

Type I Error under the Null Hypothesis

Under the null hypothesis, the simulation study has
shown that, for a typical simulation setup—that is, 50
informative meioses, 50 markers, and an average chro-
mosome size of 150 cM—the chromosome-specific type
I errors are .00574 and .00191, corresponding to LOD
scores 3.0 and 3.6, respectively (table 3). The former

value is 1.0021, implying that LOD score 3.0 is liberal;
the latter value, on the other hand, is less than the de-
signed type I error, indicating that LOD score 3.6 is
slightly conservative.

The Monte Carlo experiments show that, for n �
, the type I error corresponding to LOD score30–100
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Figure 3 Powers, reliability, TPP, and FPP, for LOD scores of
3.0 and 3.6 in the presence of one major gene.

Figure 4 Powers, reliability, TPP, and FPP, for LOD scores of
3.0 and 3.6 in the presence of two major genes.

3.6 is .0017–.00081, whereas the type I error corre-
sponding to LOD score 3.0 ranges is .00566–.00369
(table 3). Similarly, the type I error is smaller on shorter
chromosomes than on longer chromosomes. On the
other hand, it is comforting to know that an increase in
the number of markers has a fairly limited impact on
the type I error. Our results are consistent with the find-
ings by Lander and Kruglyak (1995), as well as with the
empirical observation made by Sawcer et al. (1997); in
fact, it also provides an explanation for the latter—that
is, after account is taken of all the different chromosomal
lengths and of the actual sample size, the desired LOD
score in the Sawcer et al. (1997) study is ∼3.2, or some-
where between LOD sore 3.0 and LOD score 3.6.

Comparison under an Alternative Hypothesis, with
One Major Gene

Now we will study these two critical values under the
alternative hypothesis with one major gene. Figure 3 has
four panels: the upper-left panel describes the estimated
power of rejecting the null hypothesis, the upper-right
panel shows estimated reliability, the lower-left panel
shows empirical TPP, and the lower-left panel shows
estimated FPP. The unbroken line represents the results
for the LOD-score-3.6 criterion, whereas the dotted line
represents the values for the LOD-score-3.0 criterion.
Comparing the two power curves, one observes the ex-
pected gain of power when the LOD-score-3.0 criterion,
rather than the LOD-score-3.6 criterion, is used (fig. 3,
upper-left panel). After rejecting the null hypothesis, one
is interested in either TPP and FPP or, simply, the reli-
ability index, per Morton’s (1998) suggestion. The up-
per-right panel of figure 3 appears to suggest that reli-
abilities for LOD scores 3.6 and 3.0 are comparable and

that the former appears to be marginally favored. On
investigating TPP (fig. 3, lower-left panel), one would
see that TPP increases as the mixing proportion l in-
creases. Overall, TPP is higher for LOD score 3.0 than
for LOD score 3.6, as expected. Interestingly, FPP in-
creases with the mixing proportion until l is ∼.6 and
then decreases. One possible explanation is that, as the
mixing proportion increases to .6, FPP increases because
of the “regional effects” described above and that yet,
after the mixing proportion becomes 1.6 , the ratio of
linkage signal versus regional effects increases and thus
reduces FPP. Because of a close connection between the
regional effects and the width of the prediction intervals
from �e to �e, choosing e on the basis of patterns of
either LOD scores or recombination fractions may offer
additional information and hence may reduce FPP (see
the Discussion section). Addressing this issue is impor-
tant, since FPP here could be as high as 20%. In com-
parison, FPPs associated with LOD score 3.0 are higher
than those with LOD score 3.6. It is recognized that,
under the alternative hypothesis, properties may depend
on the single major gene’s location being specified as 40
cM. To broaden the alternative hypothesis, a separate
simulation experiment has been performed with a lo-
cation chosen as a uniform variate over the length of
the chromosome in each replicate (not shown). The re-
sulting powers, reliabilities, TPP, and FPP are compa-
rable to those observed for the fixed location.

Comparison under an Alternative Hypothesis, with
Two Major Genes

In disease-gene discovery, one needs to allow two or
more major genes on the same chromosomes, as alter-
native hypotheses. For simplicity, we consider alterna-
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tives with two major genes, induced by mixing three
different recombination events: (1) the presence of a ma-
jor gene at 40 cM, (2) the presence of the second major
gene at 120 cM, and (3) the absence of any major genes.
We use two equal mixing proportions; for example,

implies that 30% of recombination is linked withl � .3
the first gene, 30% with the second gene, and the re-
maining 40% with no gene at all. Figure 4 shows the
power, reliability, TPP, and FPP. As expected, the power
of testing the null hypothesis is lower for the two-major-
genes alternative than that for testing a single major
gene, and use of LOD score 3.0 provides higher power
than does use of LOD score 3.6 (fig. 4, upper-left panel).
The reduced power, compared with that for a single
disease gene, is probably due to the presence of fewer
informative meioses at a particular major gene, in con-
trast with what is seen for the single-major-gene alter-
native. Although not entirely surprising, the reliability
for LOD scores 3.0 and 3.6 is comparable and is lower
than that under the single-major-gene alternative (fig. 4,
upper-right panel). On further investigation of TPP and
FPP (fig. 4, lower panels), it becomes clear that the low
reliability is caused by a low TPP in combination with
a high FPP. This result suggests that, even after detection
of a linkage signal, it is difficult to localize those disease
genes when there are two (or more) disease genes on the
same chromosome. As noted above, the locations of the
two major genes under the alternative hypothesis are
specified as being at 40 and 120 cM. To broaden this
alternative hypothesis, we perform a separate simulation
experiment with uniformly distributed locations for the
paired disease gene in each replicate (data not shown).
Although comparable to those for the fixed locations,
the resulting powers, reliabilities, TPP, and FPP appear
to have greater variability than those for the fixed lo-
cations, probably because of the variable distances be-
tween the two disease genes.

Influences of e under the One-Major-Gene Alternative

As noted above, the patterns of the power curves for
LOD score 3.0 are comparable to those for LOD score
3.6. For simplicity, the evaluation of power hereafter
concentrates on LOD score 3.6. As described above, the
prediction procedure is based on LOD scores; if the max-
imum LOD score is 13.6, then one predicts that the
region around the corresponding marker, (d � �,d �m m

), includes a disease locus. This prediction is correct if�
the candidate region does include the true disease-gene
locus and is incorrect otherwise. In the interest of space,
the following presentation focuses on power and relia-
bility, when e is chosen to be 2, 5, 10 or 20 cM, and
the corresponding figures are shown in the upper and
lower panels of figure 5a. As expected, the power of
rejecting the null hypothesis is not influenced by the

choice of e, since the test statistic does not depend on
this parameter (fig. 5a, upper panel). The reliability, on
the other hand, favors a larger e, because the prediction
with a larger e is less specific and, hence, more reliable
(fig. 5a, lower panel). Interestingly, the reliability for the
choice of is substantially better than that for the� � 10
choice of or 5 cM and is not much worse than� � 2
that for the choice . On further investigation� � 20 cM
of TPP, it appears that TPP for is quite close� � 10 cM
to that for and is substantially better than� � 20 cM
that for or 2 cM, again confirming the earlier� � 5 cM
observation based on the reliability (not shown).

Influences of Chromosome Length under the One-
Major-Gene Alternative

Since human chromosomes have variable lengths, it
is important to evaluate the influence that their varia-
bility has on the properties of the testing-and-prediction
procedure. Here we consider four different chromosome
lengths: 60, 150, 200, and 300 cM (fig. 5b). Since,
throughout this simulation setting, the number of mark-
ers is fixed at 50, a variation of chromosome length
essentially alters the correlation structure among recom-
bination events; a shorter length implies a greater cor-
relation. It appears that the test statistic’s power has
limited variation for various chromosome lengths, im-
plying that the testing procedure is rather robust across
all chromosomes (fig. 5a, upper panel). However, the
reliability for longer chromosomes—for example, those
that are ∼300 cM—is rather variable and also is lower
than that for chromosomes that are !200 cM (fig. 5a,
lower panel). Meanwhile, reliability for those chromo-
some that are 60–200 cM is rather comparable, showing
that the shorter chromosomes—that is, 20 of the 24
chromosomes—have comparable reliability.

Influences of Marker Numbers under the One-Major-
Gene Alternative

In the discover of disease genes, one way to improve
power is to increase the number of markers. For a chro-
mosome of average length, an increase in the number of
markers certainly increases the information content, but
the increase in information content is not necessarily
proportional to the increase in the number of markers,
since the number of markers is correlated with an in-
crease in the correlation of recombination events among
marker loci. To address this issue, we consider four sce-
narios, with 20, 40, 50, and 100 markers used in genome
scan, corresponding, respectively, to densities of, on av-
erage, 7.5, 3.7, 3.0, and 1.5 cM. Figure 5c shows power
and reliability. Power as shown in the upper panel of
figure 5c shows that an increase in the number of mark-
ers improves the power but that, surprisingly, the im-
provement is modest. However, from the perspective of



Figure 5 Powers and reliability for LOD score of 3.6 under the one-major-gene alternative, with four key parameters varying: (a) the neighborhood parameter for the candidate genomic region
is chosen to be , 5, 10, or 20 cM; (b) the length of the chromosome is 60, 150, 200, or 300 cM; (c) , 40, 50, or 100; (d) , 50, 60, or 100.� � 2 h � 20 n � 30
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prediction, it appears that the presence of 120 markers
improves the reliability substantially (fig. 5c, lower
panel). On the other hand, there appears to be limited
gain in reliability when there are 1∼40 markers.

Influences of Sample Sizes under the One-Major-Gene
Alternative

Also for the purpose of improvement in power, one
alternative to having more markers is to increase sample
sizes—that is, having more family members and/or more
families and thus increasing the numbers of informative
meioses. To evaluate the gain in power, we consider four
scenarios: 30, 50, 60, and 100 informative meioses. Fig.
5b shows powers and other related statistics. As ex-
pected, an increase in the number of informative meioses
directly increases the powers of test statistics (fig. 5c,
upper panel), the improvement of which is remarkable.
The reliability is also improved by an increase in sample
size (fig. 5c, lower panel), but the improvement is rel-
atively modest. On further investigation of TPP and FPP
(not shown), it becomes clear that the improvement of
TPP when sample size increases is substantial, whereas
FPP also appears to increase somewhat. Nevertheless,
an increase in sample size is effective for improvement
of the power to detect linkage signals and to predict
where disease genes are, if the study of either more family
members or more families is feasible and if no genetic
heterogeneity is introduced.

Influences of Sample Sizes under the Two-Major-
Genes Alternative

The simulation result shown above indicates that
power and reliability become fairly low in the presence
of two major genes. One possible cause for this reduction
is that the number of informative meioses for each gene
is reduced. To examine this issue, we consider four sce-
narios with n: , 75, 100, and 150. As expected,n � 50
an increase in the sample size improves the power of
rejecting the null hypothesis (fig. 6a, upper panel). Ex-
amination of the reliability figure (fig. 6a, lower panel)
suggests that an increase in sample size also improves
the reliability, but the magnitude of the improvement is
relatively modest. Further examinations of TPP and FPP
(not shown) suggest that an increase in sample size im-
proves TPP substantially and, at the same time, increases
FPP, diminishing the improvement of the reliability.
Therefore, when two or more major genes are present
on one chromosome, an increase in sample size provides
power for rejection of the null hypothesis and improves
the chance that disease genes will be detected, at the
expense of having an increase in false-positive linkage
signals.

Influences of the Number of Markers under the Two-
Major-Genes Alternative

Again, on the basis of the same rationale as has been
given above, one may increase the number of markers
in the hope of increasing the chance to detect linkage
signals. Paralleling the earlier specification, we consider
four different scenarios: 20, 40, 50, and 100 markers
used in scanning each chromosome of the genome. Con-
sistent with the earlier finding under the one-major-gene
alternative, the addition of markers improves the power
(fig. 6b, upper panel), and the improvement becomes a
marginal return once there are �40 markers. Similarly,
having more markers improves the reliability somewhat,
with diminishing returns when (fig. 6b, lowerh 1 20
panel). Interestingly, the reliability seems quite variable
with a small number of markers (e.g., 20).

Influences of Chromosome Length under the Two-
Major-Genes Alternative

Recognizing the variation in chromosome length, we
consider four scenarios for the latter: 60, 150, 200, and
300 cM and assess their influences on power and reli-
ability (fig. 6c). Note that the second gene locates at 120
cM, outside the shortest chromosome, which is at 60
cM, and thus this scenario implies that the single gene
is present at 40 cM. The power for chromosomes �150
cM seems to be comparable (fig. 6c,upper panel). As
expected, the power for shorter chromosomes is much
lower, because it includes only a single gene with the
much smaller mixing proportion l. Similarly, the relia-
bility for chromosomes �150 cM is also comparable
(fig. 6c, lower panel). This observation is consistently
supported by TPP and FPP (data not shown). The ex-
ceptional reliability for shorter chromosome is due to
extremely low FPP, which results in the presence of only
one major gene.

Influences of e under the Two-Major-Genes Alternative

A typical example of the two-major-genes alternative,
shown in figure 1, suggests that the presence of two or
more genes could easily create a chromosomewide pat-
tern, of either recombination fractions or LOD scores,
that would mislead the localization of those disease
genes. One way to improve TPP naturally is to use less
specific criteria in the identification of the candidate ge-
nomic region—that is, an e 110 cM. To address the in-
fluences of e, we consider the same four scenarios as
have been given above: , 5, 10, and 20 cM. As� � 2
expected, the choice of e does not affect power (fig. 6d,
upper panel). Examining the reliability (fig. 6d, lower
panel), one observes an appreciable improvement when
a large e is used. This improvement results from the
combination of increased TPP and decreased FPP, when



Figure 6 Powers and reliability for LOD score 3.6 in the presence of two major genes, with four key parameters varying: (a) , 50, 60, or 100; (b) , 40, 50, or 100; (c) length ofn � 30 h � 20
chromosome is 60, 150, 200, or 300 cM; (d) neighborhood parameter for candidate genomic region is chosen to be , 5, 10, or 20 cM.� � 2
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Table 4

Average Number of False-Positive Errors under the Null
Hypothesis as � Increases from 20 to 200, on an Average
Chromosome of 150 cM

NO. OF

MARKERS

AVERAGE NO. OF FALSE POSITIVE ERRORS, FOR

Lod Score 3.6 Lod Score 3.0 Lod Score 2.0

20 .0017 .0058 .0551

40 .0034 .0134 .1056

60 .0051 .0181 .1571

80 .0061 .0238 .2067

100 .0081 .0307 .2665

120 .0107 .0355 .3079

140 .0123 .0429 .3635

160 .0133 .0449 .4017

180 .0170 .0558 .4647

200 .0176 .0618 .5181

e increases (not shown). Increasing e to 120 cM could
further improve the reliability (not shown); however,
such an improvement is, of course, at the expense of
prediction, which becomes less precise.

Expected Number of False-Positive Errors and Number
of Markers

As discussed above, in the section “Type 1 Error, Ex-
pected Number of False-Positive Errors, FPP, and Re-
lated Indices,” the expected number of false-positive er-
rors provides another sensible index for measurement of
the error of incorrect rejection of the null hypothesis.
The key assumption for its validity is that the number
of error occurrences is “relatively” small (Lander and
Kruglyak 1995). Here we consider a realistic situation
that may violate this assumption; that is, when the num-
ber of markers in genome-scan studies increases, the
number of error occurrences also increases, because of
the correlation of recombinant events among adjacent
marker intervals. Under the aforementioned simulation
setup, we compute the average number of false-positive
errors under the null hypothesis, using LOD scores 3.6,
3.0, and 2.0, while the number of markers on an average
chromosome of 150 cM increases from 20 to 200 (table
4). At a relatively low density of 20 markers, the average
number of false-positive errors is ∼.0017, just below the
intended type I error, when LOD score 3.6 is used. For
LOD score 3.0, the average number of false-positive
markers, .0058, is comparable to .0057, the type I error
obtained from the earlier simulation under the null hy-
pothesis. Now, as the number of markers increases from
20 to 200, the average number of false-positive errors
increases accordingly, from .0017 to .0176, for LOD
score 3.6, and from .0058 to .0618, for LOD score 3.0;
if LOD score 2.0 is used, the average number of false-
positive errors reaches .5181, with 200 markers. Given
such a strong association with the number of markers,
it is natural to conclude that, as an index for measure-
ment of genomewide significance, the expected number
of false-positive errors is less preferable than the type I
error.

Discussion

The principal conclusions to be derived from the
Monte Carlo simulation experiments discussed above
are fivefold. (1) It appears that the reliability of the LOD-
score-3.0 criterion and that of the LOD-score-3.6 cri-
terion are rather comparable in testing and prediction,
in the presence of one or two major genes; however,
with regard to ensuring that the type I error at the chro-
mosomal level is .0021, the use of LOD score 3.6 ap-
pears to be more appropriate than the use of LOD score
3.0, even though the type I error is influenced by the

sample size and by the chromosome sizes. Hence, this
simulation supports the use of LOD score 3.6 as a con-
servative way of ensuring that the genomewide signifi-
cance under the null hypothesis is .05. (2) In disease-
gene discovery, the presence of two or more major genes
substantially reduces the reliability—that is, there is re-
duced TPP and increased FPP, even though the reduction
in power is modest. To improve the utility of linkage-
based mapping, it seems necessary, for detection of mul-
tiple genes on the same chromosome, to search for meth-
ods that are more powerful than the use of just a simple
cutoff. (3) Limited simulations have also shown that
reliability is rather sensitive to the choice of e, which
determines the precision of the prediction. In balancing
the precision of the predicted genomic region versus ad-
equate reliability in the prediction of such a region, one
may consider choosing an e that is ∼10 cM if a single
gene is postulated and choosing an e that is ∼20 cM if
two genes are postulated. (4) Although an increase in
the number of markers—for example, from 20 to �40
markers/chromosome—improves power and reliability,
having an excessively large number of markers—for ex-
ample, 140 markers/chromosome—results in only a
small additional return. (5) Compared with an increase
in the number of markers, an increase in sample
size—that is, having either more family members or
more families—is probably a more desirable way to in-
crease power, if a single-gene alternative is used. If two
or more disease genes are suspected on the same chro-
mosome, then the power improvement that is due to an
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Table 5

Type I Errors for LOD scores 3.6 and 3.0, in the
Presence of Interference, from 0 (Absence of
Interference) to .05 (Weak Interference) to .10
(Modestly Weak Interference) to .20 (Modest
Interference) to .30 (Strong Interference)

INTERFERENCE

PARAMETER

TYPE I ERROR, FOR

LOD Score 3.6 LOD Score 3.0

.00 .00196 .00597

.05 .00244 .00681

.10 .00344 .00966

.20 .01459 .03268

.30 .05468 .10466

increase in sample size is noticeable, but the improve-
ment in either TPP or FPP is rather modest. This result
suggests that it is important to increase sample sizes of
homogeneous groups, if the current testing procedure is
to used; alternatively, however, one may develop a new
approach that explicitly incorporates the presence of
multiple disease genes. It is anticipated that the linkage
analysis with an appropriate tool would have improved
power with an increase in sample size of even hetero-
geneous groups.

Although these conclusions appear to be sensible, it
is important to recognize the context in which these con-
clusions are drawn. First, each experiment simulates a
sample of fully informative meioses, in which all recom-
bination fractions are directly estimable by averaging the
recombinant indicators. Although such meiotic data are
obtainable in controlled experiments, they are rarely
available in human studies. With observational human
data, the situation considered by Sawcer et al. (1997),
meioses generally have to be inferred from pedigree data
indirectly, under a set of additional assumptions. In prac-
tice, some of these assumptions may be violated, leading
to “noisy” estimators of recombination fractions and
thereby reducing the signal/noise ratio. Consequently, it
is possible that associations identified in the ideal ex-
periment may differ somewhat under more-realistic sam-
pling circumstances.

Second, most simulation experiments assume a par-
ticular placement of the putative disease gene in the map
and also a mixture of linked and unlinked meioses. This
mechanism of recombination process may be different
from the actual process, which could depend on pedigree
structures, penetrance, disease-allele frequency, and/or
marker-allele frequency.

Third, the procedure described above predicts that one
or more disease genes may be contained in the interval,
from �e to �e, around the marker with the maximum
LOD score, and that the choice of the constant interval
is somewhat arbitrary. To relax this restriction, one may
use the LOD-score values or estimated recombination
fractions around the marker of the maximum LOD score
and then, making use of empirical data, predict those
intervals; alternatively, one may also consider modeling
patterns of recombination fractions rigorously, as a way
of determining locations of disease genes, an approach
that will be explored in the future.

Fourth, this simulation setup assumes knowledge
about the presence of one or two (or more) disease genes
on the same chromosome. In practice, such knowledge
is not available, and the absence of such knowledge pre-
sumably would reduce the power of simple test statistics.
Overcoming this problem calls for new methodologies
that retain power in the presence of multiple disease
genes. Although developing methods to address multiple
disease genes is necessary and important, it is also im-

portant to point out that the presence of multiple genes
on different chromosomes may be more common than
multiple disease genes on a single chromosome. Of
course, the genetic heterogeneity across chromosomes
has been implicitly addressed by allowing unlinked mei-
oses in simulations and has been shown to be less
problematic.

Fifth, the simulation setup generally assumes that
there is no interference, since the latter is believed to
play a limited role in the human genome; however, in-
terference has been shown in the yeast genome, and its
presence in the human genome could affect the depen-
dence structure of recombination events and, hence, alter
aspects of our evaluation. For this reason, we followed
the simulation procedure described above and simulated
correlated recombination events with a dependence pa-
rameter, which took values of .00–.30, corresponding to
the range from no interference to strong interference.
Table 5 lists estimated chromosome-specific type I errors
when either LOD score 3.6 and LOD score 3.0 is used,
when the interference parameter has values of .00, .05,
.10, .20 and .30. Clearly, the presence of interference
inflates the type I error, and, depending on the magnitude
of the interference, this inflation could be substantial.

Bearing in mind the specific setup of these Monte
Carlo simulation experiments, we have learned some
lessons beyond the conclusions discussed above. The first
lesson concerns the nature of pointwise P values. Typ-
ically, a pointwise P value corresponding to a LOD
score—for example, LOD score 3.0—is on the order
10�4, which is an impressive number to report. In our
limited Monte Carlo experiments, we observed LOD
scores 13.0 that were present somewhere along the ge-
nome, with a frequency much higher than 10�4. In the
statistical literature, this problem is known as a multiple-
comparison problem (see Hsu 1996). Without an ap-
propriate adjustment for multiple comparison, the point-
wise significance levels are misleading and should not
be reported.

As a second lesson, this simulation study allows us to
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Figure 7 Typical pattern of LOD scores and Z-scores from a
simulated genome scan with the mixing proportion (other ex-l � .5
amples may be simulated online at the Fred Hutchinson Cancer Re-
search Center QGE Website).

appreciate the gain from point estimates of recombi-
nation fractions, besides LOD scores. It is recognized
that LOD scores are generally used to search for linkage
signals. A large LOD score at a marker locus implies
either that the recombination fraction is deviating from
.50 or that the number of informative meioses at that
locus is substantial. Hence, the recombination fraction
could be informative about the location of the disease
gene, in a situation in which the marker is fairly close
to the putative disease gene and yet is less informative
than neighboring markers. For example, consider a sin-
gle-nucleotide–polymorphism marker that is near the
disease gene. This marker may be less heterozygous than
its neighboring markers. In such cases, estimated recom-
bination fractions could be used in conjunction with
LOD scores.

The third lesson is related to the fine scale–mapping
strategy. A typical mapping study aims to identify
marker loci with significant signals and with the highest
LOD score and to map genes at a fine scale (e.g., ∼1
cM) around those loci, using, for example, linkage-dis-
equilibrium analysis. Our simulation has shown, how-
ever, that use of narrow intervals, which may be nec-
essary for linkage-disequilibrium mapping, may have a
good chance of missing the true disease-gene location.
On the other hand, the power for fine-scale mapping by
linkage-disequilibrium analysis may be limited for large
intervals. Balancing these opposing considerations, one
may have to consider either an increase in sample size,
to narrow the intervals, or an increase in the number of
markers, to improve the linkage-disequilibrium signals,
along with alternative strategies—such as the use of can-
didate genes in targeted regions—for efficient fine-scale
mapping.

The fourth lesson concerns the relationship between
LOD scores and Wald-test statistics. It is well known
that the LOD score (or, equivalently, the likelihood ratio)
is asymptotically equivalent to the Wald-test statistic for
likelihood-based inference (e.g., see Cox and Hinkley
1986). It is also known that these two test statistics could
differ in some situations (Moolgavkar and Vezon 1987).
In the current context of linkage analysis, we compared
the Wald-test statistic versus the LOD score, on the same
scale (fig. 7). Interestingly, the pattern of LOD scores
and that of Wald-test statistics are generally comparable,
except at the boundary value of 0 recombination frac-
tion. Other examples may be simulated on our Website.

Finally, the results of the study of genomewide sig-
nificance in the present report also have implications for
genomewide searches for linkage-disequilibrium map-
ping, for studies of loss of heterozygosity, and for studies
with a large gene-expression array. Rather similar to
linkage analysis, linkage-disequilibrium analysis and
loss-of-heterozygosity analysis also take advantage of

the linear genomic structure and compute a vector of
correlated test statistics for a group of linearly ordered
markers along the genome, in addition to a vector of
estimated parameters that quantify the associations of
interest. The unique feature, however, is that the de-
pendencies induced by the linkage-disequilibrium anal-
ysis and by the loss-of-heterozygosity analysis are dif-
ferent from those induced by linkage analysis, thereby
having an impact on the assessment of the related ge-
nomewide significance; for example, the correlation of
linkage-disequilibrium signals is weaker than that of
linkage signals between adjacent marker loci, which may
result in a further increase in LOD-score cutoff values,
if the maximum LOD score is used as the test statistic.

On the other hand, the analysis of a large array of
expressed genes presents a different challenge to the as-
sessment of the “genomewide” significance. Indeed,
functional genes—for example, those on the current Af-
fymetrix array of 6,800 genes—are chosen primarily for
their functional significance, particularly with regard to
their regulation during the cell-cycle process. Even
though all these genes are located somewhere in the ge-
nome, the linear genomic structure is of less importance,
since the primary interest is in their association with a
certain phenotype. An important property, however, is
that the functionality of these genes is organized via an
underlying network with many pathways by which genes
may penetrate to phenotypes of interest (L. Hood, in the
ceremony for the opening of the Thomas Building at the
Fred Hutchinson Cancer Research Center). Those genes,
on the same pathway, tend to be highly correlated,
whereas genes not sharing the pathway may be much
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less correlated or even uncorrelated. Unfortunately, the
underlying network structure is unknown, prohibiting
any straightforward grouping of thousands of functional
genes.

Hence, in much of the general context of genome-scan
studies, it appears that the use only of maximum LOD
scores (or an equivalent statistic) is probably too sim-
plistic. To be fully efficient in the testing of the null
hypothesis, one probably has to use the test statistic that
has power under a broad range of alternatives. Mean-
while, to ensure the greatest reliability, one may need to
have a flexible algorithm to search the genome for all
possible leads, in the hope of improving TPP and re-
ducing FPP, under a broad range of alternatives. Moti-
vated by this consideration, we are currently developing
a two-step procedure: in the first step, one tests the null
hypothesis; in the second step, one searches for positive
leads for disease genes. Separate statistics are chosen for
each steps, and each is optimized to achieve the desired
efficiency. The results of this work will be provided in
a future report.
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